Causal inferences from many experiments
Wendy K. Tam Cho
Journal of Applied Statistics, 2017, vol. 44, issue 16, 2908-2922
Abstract:
The underlying statistical concept that animates empirical strategies for extracting causal inferences from observational data is that observational data may be adjusted to resemble data that might have originated from a randomized experiment. This idea has driven the literature on matching methods. We explore an un-mined idea for making causal inferences with observational data – that any given observational study may contain a large number of indistinguishably balanced matched designs. We demonstrate how the absence of a unique best solution presents an opportunity for greater information retrieval in causal inference analysis based on the principle that many solutions teach us more about a given scientific hypothesis than a single study and improves our discernment with observational studies. The implementation can be achieved by integrating the statistical theories and models within a computational optimization framework that embodies the statistical foundations and reasoning.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1266468 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:16:p:2908-2922
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1266468
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().