EconPapers    
Economics at your fingertips  
 

The evaluation of socio-economic development of development agency regions in Turkey using classical and robust principal component analyses

Hasan Bulut and Yüksel Öner

Journal of Applied Statistics, 2017, vol. 44, issue 16, 2936-2948

Abstract: In this study, classical and robust principal component analyses are used to evaluate socioeconomic development of regions of development agencies that give service on the purpose of decreasing development difference among regions in Turkey. Due to the high differences between development levels of regions outlier problem occurs, hence robust statistical methods are used. Also, classical and robust statistical methods are used to investigate if there are any outliers in data set. In classic principal component analyse, the number of observations must be larger than the number of variables. Otherwise determinant of covariance matrix is zero. In Robust method for Principal Component Analysis (ROBPCA), a robust approach to principal component analyse in high-dimensional data, even if the number of variables is larger than the number of observations, principal components are obtained. In this paper, firstly 26 development agencies are evaluated with 19 variables by using principal component analysis based on classical and robust scatter matrices and then these 26 development agencies are evaluated with 46 variables by using the ROBPCA method.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1267115 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:16:p:2936-2948

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2016.1267115

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:44:y:2017:i:16:p:2936-2948