EconPapers    
Economics at your fingertips  
 

Missing data methods for arbitrary missingness with small samples

Daniel McNeish

Journal of Applied Statistics, 2017, vol. 44, issue 1, 24-39

Abstract: Missing data are a prevalent and widespread data analytic issue and previous studies have performed simulations to compare the performance of missing data methods in various contexts and for various models; however, one such context that has yet to receive much attention in the literature is the handling of missing data with small samples, particularly when the missingness is arbitrary. Prior studies have either compared methods for small samples with monotone missingness commonly found in longitudinal studies or have investigated the performance of a single method to handle arbitrary missingness with small samples but studies have yet to compare the relative performance of commonly implemented missing data methods for small samples with arbitrary missingness. This study conducts a simulation study to compare and assess the small sample performance of maximum likelihood, listwise deletion, joint multiple imputation, and fully conditional specification multiple imputation for a single-level regression model with a continuous outcome. Results showed that, provided assumptions are met, joint multiple imputation unanimously performed best of the methods examined in the conditions under study.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1158246 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:1:p:24-39

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2016.1158246

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:44:y:2017:i:1:p:24-39