Inference for a series system with dependent masked data under progressive interval censoring
Jing Cai,
Yimin Shi and
Bin Liu
Journal of Applied Statistics, 2017, vol. 44, issue 1, 3-15
Abstract:
This paper considers the statistical analysis of masked data in a series system with Burr-XII distributed components. Based on progressively Type-I interval censored sample, the maximum likelihood estimators for the parameters are obtained by using the expectation maximization algorithm, and the associated approximate confidence intervals are also derived. In addition, Gibbs sampling procedure using important sampling is applied for obtaining the Bayesian estimates of the parameters, and Monte Carlo method is employed to construct the credible intervals. Finally, a simulation study is proposed to illustrate the efficiency of the methods under different removal schemes and masking probabilities.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1156658 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:1:p:3-15
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1156658
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().