EconPapers    
Economics at your fingertips  
 

Monitoring foreclosure rates with a spatially risk-adjusted Bernoulli CUSUM chart for concurrent observations

Matthew J. Keefe, Christopher T. Franck and William H. Woodall

Journal of Applied Statistics, 2017, vol. 44, issue 2, 325-341

Abstract: Frequently in process monitoring, situations arise in which the order that events occur cannot be distinguished, motivating the need to accommodate multiple observations occurring at the same time, or concurrent observations. The risk-adjusted Bernoulli cumulative sum (CUSUM) control chart can be used to monitor the rate of an adverse event by fitting a risk-adjustment model, followed by a likelihood ratio-based scoring method that produces a statistic that can be monitored. In our paper, we develop a risk-adjusted Bernoulli CUSUM control chart for concurrent observations. Furthermore, we adopt a novel approach that uses a combined mixture model and kernel density estimation approach in order to perform risk-adjustment with regard to spatial location. Our proposed method allows for monitoring binary outcomes through time with multiple observations at each time point, where the chart is spatially adjusted for each Bernoulli observation's estimated probability of the adverse event. A simulation study is presented to assess the performance of the proposed monitoring scheme. We apply our method using data from Wayne County, Michigan between 2005 and 2014 to monitor the rate of foreclosure as a percentage of all housing transactions.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1169257 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:2:p:325-341

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2016.1169257

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:44:y:2017:i:2:p:325-341