Monitoring foreclosure rates with a spatially risk-adjusted Bernoulli CUSUM chart for concurrent observations
Matthew J. Keefe,
Christopher T. Franck and
William H. Woodall
Journal of Applied Statistics, 2017, vol. 44, issue 2, 325-341
Abstract:
Frequently in process monitoring, situations arise in which the order that events occur cannot be distinguished, motivating the need to accommodate multiple observations occurring at the same time, or concurrent observations. The risk-adjusted Bernoulli cumulative sum (CUSUM) control chart can be used to monitor the rate of an adverse event by fitting a risk-adjustment model, followed by a likelihood ratio-based scoring method that produces a statistic that can be monitored. In our paper, we develop a risk-adjusted Bernoulli CUSUM control chart for concurrent observations. Furthermore, we adopt a novel approach that uses a combined mixture model and kernel density estimation approach in order to perform risk-adjustment with regard to spatial location. Our proposed method allows for monitoring binary outcomes through time with multiple observations at each time point, where the chart is spatially adjusted for each Bernoulli observation's estimated probability of the adverse event. A simulation study is presented to assess the performance of the proposed monitoring scheme. We apply our method using data from Wayne County, Michigan between 2005 and 2014 to monitor the rate of foreclosure as a percentage of all housing transactions.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1169257 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:2:p:325-341
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1169257
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().