Empirical likelihood inferences for varying coefficient partially nonlinear models
Xiaoshuang Zhou,
Peixin Zhao and
Xiuli Wang
Journal of Applied Statistics, 2017, vol. 44, issue 3, 474-492
Abstract:
In this article, empirical likelihood inferences for the varying coefficient partially nonlinear models are investigated. An empirical log-likelihood ratio function for the unknown parameter vector in the nonlinear function part and a residual-adjusted empirical log-likelihood ratio function for the nonparametric component are proposed. The corresponding Wilks phenomena are proved and the confidence regions for parametric component and nonparametric component are constructed. Simulation studies indicate that, in terms of coverage probabilities and average areas of the confidence regions, the empirical likelihood method performs better than the normal approximation-based method. Furthermore, a real data set application is also provided to illustrate the proposed empirical likelihood estimation technique.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1177496 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:3:p:474-492
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1177496
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().