EconPapers    
Economics at your fingertips  
 

Proximal support vector machine techniques on medical prediction outcome

Krystallenia Drosou and Christos Koukouvinos

Journal of Applied Statistics, 2017, vol. 44, issue 3, 533-553

Abstract: One of the major issues in medical field constitutes the correct diagnosis, including the limitation of human expertise in diagnosing the disease in a manual way. Nowadays, the use of machine learning classifiers, such as support vector machines (SVM), in medical diagnosis is increasing gradually. However, traditional classification algorithms can be limited in their performance when they are applied on highly imbalanced data sets, in which negative examples (i.e. negative to a disease) outnumber the positive examples (i.e. positive to a disease). SVM constitutes a significant improvement and its mathematical formulation allows the incorporation of different weights so as to deal with the problem of imbalanced data. In the present work an extensive study of four medical data sets is conducted using a variant of SVM, called proximal support vector machine (PSVM) proposed by Fung and Mangasarian [9]. Additionally, in order to deal with the imbalanced nature of the medical data sets we applied both a variant of SVM, referred as two-cost support vector machine and a modification of PSVM referred as modified PSVM. Both algorithms incorporate different weights one for each class examples.

Date: 2017
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1177499 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:3:p:533-553

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2016.1177499

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:44:y:2017:i:3:p:533-553