EconPapers    
Economics at your fingertips  
 

Local influence diagnostics for generalized linear mixed models with overdispersion

Trias Wahyuni Rakhmawati, Geert Molenberghs, Geert Verbeke and Christel Faes

Journal of Applied Statistics, 2017, vol. 44, issue 4, 620-641

Abstract: Since the seminal paper by Cook and Weisberg [9], local influence, next to case deletion, has gained popularity as a tool to detect influential subjects and measurements for a variety of statistical models. For the linear mixed model the approach leads to easily interpretable and computationally convenient expressions, not only highlighting influential subjects, but also which aspect of their profile leads to undue influence on the model's fit [17]. Ouwens et al. [24] applied the method to the Poisson-normal generalized linear mixed model (GLMM). Given the model's nonlinear structure, these authors did not derive interpretable components but rather focused on a graphical depiction of influence. In this paper, we consider GLMMs for binary, count, and time-to-event data, with the additional feature of accommodating overdispersion whenever necessary. For each situation, three approaches are considered, based on: (1) purely numerical derivations; (2) using a closed-form expression of the marginal likelihood function; and (3) using an integral representation of this likelihood. Unlike when case deletion is used, this leads to interpretable components, allowing not only to identify influential subjects, but also to study the cause thereof. The methodology is illustrated in case studies that range over the three data types mentioned.

Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1182128 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:4:p:620-641

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2016.1182128

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:44:y:2017:i:4:p:620-641