EconPapers    
Economics at your fingertips  
 

Exploratory tools for outlier detection in compositional data with structural zeros

M. Templ, K. Hron and Peter Filzmoser

Journal of Applied Statistics, 2017, vol. 44, issue 4, 734-752

Abstract: The analysis of compositional data using the log-ratio approach is based on ratios between the compositional parts. Zeros in the parts thus cause serious difficulties for the analysis. This is a particular problem in case of structural zeros, which cannot be simply replaced by a non-zero value as it is done, e.g. for values below detection limit or missing values. Instead, zeros to be incorporated into further statistical processing. The focus is on exploratory tools for identifying outliers in compositional data sets with structural zeros. For this purpose, Mahalanobis distances are estimated, computed either directly for subcompositions determined by their zero patterns, or by using imputation to improve the efficiency of the estimates, and then proceed to the subcompositional and subgroup level. For this approach, new theory is formulated that allows to estimate covariances for imputed compositional data and to apply estimations on subgroups using parts of this covariance matrix. Moreover, the zero pattern structure is analyzed using principal component analysis for binary data to achieve a comprehensive view of the overall multivariate data structure. The proposed tools are applied to larger compositional data sets from official statistics, where the need for an appropriate treatment of zeros is obvious.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1182135 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:4:p:734-752

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2016.1182135

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:44:y:2017:i:4:p:734-752