More efficient logistic analysis using moving extreme ranked set sampling
Hani M. Samawi,
Haresh Rochani,
Daniel Linder and
Arpita Chatterjee
Journal of Applied Statistics, 2017, vol. 44, issue 4, 753-766
Abstract:
Logistic regression is the most popular technique available for modeling dichotomous-dependent variables. It has intensive application in the field of social, medical, behavioral and public health sciences. In this paper we propose a more efficient logistic regression analysis based on moving extreme ranked set sampling (MERSSmin) scheme with ranking based on an easy-to-available auxiliary variable known to be associated with the variable of interest (response variable). The paper demonstrates that this approach will provide more powerful testing procedure as well as more efficient odds ratio and parameter estimation than using simple random sample (SRS). Theoretical derivation and simulation studies will be provided. Real data from 2011 Youth Risk Behavior Surveillance System (YRBSS) data are used to illustrate the procedures developed in this paper.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1182136 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:4:p:753-766
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1182136
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().