EconPapers    
Economics at your fingertips  
 

Negative variance components for non-negative hierarchical data with correlation, over-, and/or underdispersion

I. R. C. Oliveira, G. Molenberghs, G. Verbeke, C. G. B. Demétrio and C. T. S. Dias

Journal of Applied Statistics, 2017, vol. 44, issue 6, 1047-1063

Abstract: The concept of negative variance components in linear mixed-effects models, while confusing at first sight, has received considerable attention in the literature, for well over half a century, following the early work of Chernoff [7] and Nelder [21]. Broadly, negative variance components in linear mixed models are allowable if inferences are restricted to the implied marginal model. When a hierarchical view-point is adopted, in the sense that outcomes are specified conditionally upon random effects, the variance–covariance matrix of the random effects must be positive-definite (positive-semi-definite is also possible, but raises issues of degenerate distributions). Many contemporary software packages allow for this distinction. Less work has been done for generalized linear mixed models. Here, we study such models, with extension to allow for overdispersion, for non-negative outcomes (counts). Using a study of trichomes counts on tomato plants, it is illustrated how such negative variance components play a natural role in modeling both the correlation between repeated measures on the same experimental unit and over- or underdispersion.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1191624 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:6:p:1047-1063

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2016.1191624

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:44:y:2017:i:6:p:1047-1063