EconPapers    
Economics at your fingertips  
 

An approach to measure distance between compositional diet estimates containing essential zeros

Connie Stewart

Journal of Applied Statistics, 2017, vol. 44, issue 7, 1137-1152

Abstract: For many applications involving compositional data, it is necessary to establish a valid measure of distance, yet when essential zeros are present traditional distance measures are problematic. In quantitative fatty acid signature analysis (QFASA), compositional diet estimates are produced that often contain many zeros. In order to test for a difference in diet between two populations of predators using the QFASA diet estimates, a legitimate measure of distance for use in the test statistic is necessary. Since ecologists using QFASA must first select the potential species of prey in the predator's diet, the chosen measure of distance should be such that the distance between samples does not decrease as the number of species considered increases, a property known in general as subcompositional coherence. In this paper we compare three measures of distance for compositional data capable of handling zeros, but not satisfying some of the well-accepted principles of compositional data analysis. For compositional diet estimates, the most relevant of these is the property of subcompositionally coherence and we show that this property may be approximately satisfied. Based on the results of a simulation study and an application to real-life QFASA diet estimates of grey seals, we recommend the chi-square measure of distance.

Date: 2017
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1193846 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:7:p:1137-1152

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2016.1193846

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:44:y:2017:i:7:p:1137-1152