A generalized pivotal quantity approach to portfolio selection
Philip L.H. Yu,
T Mathew and
Yuanyuan Zhu
Journal of Applied Statistics, 2017, vol. 44, issue 8, 1402-1420
Abstract:
The major problem of mean–variance portfolio optimization is parameter uncertainty. Many methods have been proposed to tackle this problem, including shrinkage methods, resampling techniques, and imposing constraints on the portfolio weights, etc. This paper suggests a new estimation method for mean–variance portfolio weights based on the concept of generalized pivotal quantity (GPQ) in the case when asset returns are multivariate normally distributed and serially independent. Both point and interval estimations of the portfolio weights are considered. Comparing with Markowitz's mean–variance model, resampling and shrinkage methods, we find that the proposed GPQ method typically yields the smallest mean-squared error for the point estimate of the portfolio weights and obtains a satisfactory coverage rate for their simultaneous confidence intervals. Finally, we apply the proposed methodology to address a portfolio rebalancing problem.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1214241 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:8:p:1402-1420
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1214241
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().