EconPapers    
Economics at your fingertips  
 

A generalized pivotal quantity approach to portfolio selection

Philip L.H. Yu, T Mathew and Yuanyuan Zhu

Journal of Applied Statistics, 2017, vol. 44, issue 8, 1402-1420

Abstract: The major problem of mean–variance portfolio optimization is parameter uncertainty. Many methods have been proposed to tackle this problem, including shrinkage methods, resampling techniques, and imposing constraints on the portfolio weights, etc. This paper suggests a new estimation method for mean–variance portfolio weights based on the concept of generalized pivotal quantity (GPQ) in the case when asset returns are multivariate normally distributed and serially independent. Both point and interval estimations of the portfolio weights are considered. Comparing with Markowitz's mean–variance model, resampling and shrinkage methods, we find that the proposed GPQ method typically yields the smallest mean-squared error for the point estimate of the portfolio weights and obtains a satisfactory coverage rate for their simultaneous confidence intervals. Finally, we apply the proposed methodology to address a portfolio rebalancing problem.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1214241 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:8:p:1402-1420

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2016.1214241

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-22
Handle: RePEc:taf:japsta:v:44:y:2017:i:8:p:1402-1420