EconPapers    
Economics at your fingertips  
 

Estimation based on progressive first-failure censoring from exponentiated exponential distribution

Heba S. Mohammed, Saieed F. Ateya and Essam K. AL-Hussaini

Journal of Applied Statistics, 2017, vol. 44, issue 8, 1479-1494

Abstract: In this paper, point and interval estimations for the parameters of the exponentiated exponential (EE) distribution are studied based on progressive first-failure-censored data. The Bayes estimates are computed based on squared error and Linex loss functions and using Markov Chain Monte Carlo (MCMC) algorithm. Also, based on this censoring scheme, approximate confidence intervals for the parameters of EE distribution are developed. Monte Carlo simulation study is carried out to compare the performances of the different methods by computing the estimated risks (ERs), as well as Akaike's information criteria (AIC) and Bayesian information criteria (BIC) of the estimates. Finally, a real data set is introduced and analyzed using EE and Weibull distributions. A comparison is carried out between the mentioned models based on the corresponding Kolmogorov–Smirnov (K–S) test statistic to emphasize that the EE model fits the data with the same efficiency as the other model. Point and interval estimation of all parameters are studied based on this real data set as illustrative example.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1214245 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:8:p:1479-1494

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2016.1214245

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:44:y:2017:i:8:p:1479-1494