EconPapers    
Economics at your fingertips  
 

Estimation and prediction for the generalized inverted exponential distribution based on progressively first-failure-censored data with application

Essam A. Ahmed

Journal of Applied Statistics, 2017, vol. 44, issue 9, 1576-1608

Abstract: In this paper, the estimation of parameters for a generalized inverted exponential distribution based on the progressively first-failure type-II right-censored sample is studied. An expectation–maximization (EM) algorithm is developed to obtain maximum likelihood estimates of unknown parameters as well as reliability and hazard functions. Using the missing value principle, the Fisher information matrix has been obtained for constructing asymptotic confidence intervals. An exact interval and an exact confidence region for the parameters are also constructed. Bayesian procedures based on Markov Chain Monte Carlo methods have been developed to approximate the posterior distribution of the parameters of interest and in addition to deduce the corresponding credible intervals. The performances of the maximum likelihood and Bayes estimators are compared in terms of their mean-squared errors through the simulation study. Furthermore, Bayes two-sample point and interval predictors are obtained when the future sample is ordinary order statistics. The squared error, linear-exponential and general entropy loss functions have been considered for obtaining the Bayes estimators and predictors. To illustrate the discussed procedures, a set of real data is analyzed.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1214692 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:9:p:1576-1608

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2016.1214692

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:44:y:2017:i:9:p:1576-1608