Penalized least squares smoothing of two-dimensional mortality tables with imposed smoothness
Eliud Silva and
Víctor M. Guerrero
Journal of Applied Statistics, 2017, vol. 44, issue 9, 1662-1679
Abstract:
This paper presents a method to estimate mortality trends of two-dimensional mortality tables. Comparability of mortality trends for two or more of such tables is enhanced by applying penalized least squares and imposing a desired percentage of smoothness to be attained by the trends. The smoothing procedure is basically determined by the smoothing parameters that are related to the percentage of smoothness. To quantify smoothness, we employ an index defined first for the one-dimensional case and then generalized to the two-dimensional one. The proposed method is applied to data from member countries of the OECD. We establish as goal the smoothed mortality surface for one of those countries and compare it with some other mortality surfaces smoothed with the same percentage of two-dimensional smoothness. Our aim is to be able to see whether convergence exists in the mortality trends of the countries under study, in both year and age dimensions.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1221905 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:9:p:1662-1679
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1221905
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().