Bayesian inference for quantum state tomography
D. S. Gonçalves,
C. L. N. Azevedo,
C. Lavor and
M. A. Gomes-Ruggiero
Journal of Applied Statistics, 2018, vol. 45, issue 10, 1846-1871
Abstract:
We present a Bayesian approach to the problem of estimating density matrices in quantum state tomography. A general framework is presented based on a suitable mathematical formulation, where a study of the convergence of the Monte Carlo Markov Chain algorithm is given, including a comparison with other estimation methods, such as maximum likelihood estimation and linear inversion. This analysis indicates that our approach not only recovers the underlying parameters quite properly, but also produces physically acceptable punctual and interval estimates. A prior sensitive study was conducted indicating that when useful prior information is available and incorporated, more accurate results are obtained. This general framework, which is based on a reparameterization of the model, allows an easier choice of the prior and proposal distributions for the Metropolis–Hastings algorithm.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2017.1401049 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:10:p:1846-1871
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2017.1401049
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().