Modeling of soybean yield using symmetric, asymmetric and bimodal distributions: implications for crop insurance
Gislaine V. Duarte,
Altemir Braga,
Daniel L. Miquelluti and
Vitor A. Ozaki
Journal of Applied Statistics, 2018, vol. 45, issue 11, 1920-1937
Abstract:
Over the years, many papers used parametric distributions to model crop yields, such as: normal (N), Beta, Log-normal and the Skew-normal (SN). These models are well-defined, mathematically and also computationally, but its do not incorporate bimodality. Therefore, it is necessary to study distributions which are more flexible in modeling, since most of crop yield data in Brazil presents evidence of asymmetry or bimodality. Thus, the aim of this study was to model and forecast soybean yields for municipalities in the State of Paran, in the period from 1980 to 2014, using the Odd log normal logistic (OLLN) distribution for the bimodal data and the Beta, SN and Skew-t distributions for the symmetrical and asymmetrical series. The OLLN model was the one which best fit the data. The results were discussed in the context of crop insurance pricing.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2017.1406902 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:11:p:1920-1937
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2017.1406902
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().