Model selection for the localized mixture of experts models
Yunlu Jiang,
Yu Conglian and
Ji Qinghua
Journal of Applied Statistics, 2018, vol. 45, issue 11, 1994-2006
Abstract:
In this paper, we propose a penalized likelihood method to simultaneous select covariate, and mixing component and obtain parameter estimation in the localized mixture of experts models. We develop an expectation maximization algorithm to solve the proposed penalized likelihood procedure, and introduce a data-driven procedure to select the tuning parameters. Extensive numerical studies are carried out to compare the finite sample performances of our proposed method and other existing methods. Finally, we apply the proposed methodology to analyze the Boston housing price data set and the baseball salaries data set.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2017.1405914 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:11:p:1994-2006
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2017.1405914
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().