EconPapers    
Economics at your fingertips  
 

Model selection for the localized mixture of experts models

Yunlu Jiang, Yu Conglian and Ji Qinghua

Journal of Applied Statistics, 2018, vol. 45, issue 11, 1994-2006

Abstract: In this paper, we propose a penalized likelihood method to simultaneous select covariate, and mixing component and obtain parameter estimation in the localized mixture of experts models. We develop an expectation maximization algorithm to solve the proposed penalized likelihood procedure, and introduce a data-driven procedure to select the tuning parameters. Extensive numerical studies are carried out to compare the finite sample performances of our proposed method and other existing methods. Finally, we apply the proposed methodology to analyze the Boston housing price data set and the baseball salaries data set.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2017.1405914 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:11:p:1994-2006

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2017.1405914

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:45:y:2018:i:11:p:1994-2006