Experimental comparison of functional and multivariate spectral-based supervised classification methods in hyperspectral image
Anthony Zullo,
Mathieu Fauvel and
Frédéric Ferraty
Journal of Applied Statistics, 2018, vol. 45, issue 12, 2219-2237
Abstract:
The aim of this article is to assess and compare several statistical methods for hyperspectral image supervised classification only using the spectral dimension. Since hyperspectral profiles may be viewed either as a random vector or a random curve, we propose to confront various multivariate discriminating procedures with functional alternatives. Eight methods representing three important statistical communities (mixture models, machine learning and functional data analysis) have been applied on three hyperspectral datasets following three protocols studying the influence of size and composition of the learning sample, with or without noised labels. Besides this comparative study, this work proposes a functional extension of multinomial logit model as well as a fast computing adaptation of the nonparametric functional discrimination. As a by-product, this work provides a useful comprehensive bibliography and also supplemental material especially oriented towards practitioners.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2017.1414162 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:12:p:2219-2237
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2017.1414162
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().