EconPapers    
Economics at your fingertips  
 

Bayesian testing for independence of two categorical variables under two-stage cluster sampling with covariates

Dilli Bhatta, Balgobin Nandram and Joseph Sedransk

Journal of Applied Statistics, 2018, vol. 45, issue 13, 2365-2393

Abstract: We consider Bayesian testing for independence of two categorical variables with covariates for a two-stage cluster sample. This is a difficult problem because we have a complex sample (i.e. cluster sample), not a simple random sample. Our approach is to convert the cluster sample with covariates into an equivalent simple random sample without covariates, which provides a surrogate of the original sample. Then, this surrogate sample is used to compute the Bayes factor to make an inference about independence. We apply our methodology to the data from the Trend in International Mathematics and Science Study [30] for fourth grade US students to assess the association between the mathematics and science scores represented as categorical variables. We show that if there is strong association between two categorical variables, there is no significant difference between the tests with and without the covariates. We also performed a simulation study to further understand the effect of covariates in various situations. We found that for borderline cases (moderate association between the two categorical variables), there are noticeable differences in the test with and without covariates.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2017.1421914 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:13:p:2365-2393

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2017.1421914

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:45:y:2018:i:13:p:2365-2393