EconPapers    
Economics at your fingertips  
 

Subgroup identification by recursive segmentation

Alexander Hapfelmeier, Kurt Ulm and Bernhard Haller

Journal of Applied Statistics, 2018, vol. 45, issue 15, 2864-2887

Abstract: A new modeling approach called ‘recursive segmentation’ is proposed to support the supervised exploration and identification of subgroups or clusters. It is based on the frameworks of recursive partitioning and the Patient Rule Induction Method (PRIM). Through combining these methods, recursive segmentation aims to exploit their respective strengths while reducing their weaknesses. Consequently, recursive segmentation can be applied in a very general way, that is in any (multivariate) regression, classification or survival (time-to-event) problem, using conditional inference, evolutionary learning or the CART algorithm, with predictor variables of any scale and with missing values. Furthermore, results of a synthetic example and a benchmark application study that comprises 26 data sets suggest that recursive segmentation achieves a competitive prediction accuracy and provides more accurate definitions of subgroups by models of less complexity as compared to recursive partitioning and PRIM. An application to the German Breast Cancer Study Group data demonstrates the improved interpretability and reliability of results produced by the new approach. The method is made publicly available through the R-package rseg (http://rseg.r-forge.r-project.org/).

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2018.1444152 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:15:p:2864-2887

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2018.1444152

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:45:y:2018:i:15:p:2864-2887