Subgroup identification by recursive segmentation
Alexander Hapfelmeier,
Kurt Ulm and
Bernhard Haller
Journal of Applied Statistics, 2018, vol. 45, issue 15, 2864-2887
Abstract:
A new modeling approach called ‘recursive segmentation’ is proposed to support the supervised exploration and identification of subgroups or clusters. It is based on the frameworks of recursive partitioning and the Patient Rule Induction Method (PRIM). Through combining these methods, recursive segmentation aims to exploit their respective strengths while reducing their weaknesses. Consequently, recursive segmentation can be applied in a very general way, that is in any (multivariate) regression, classification or survival (time-to-event) problem, using conditional inference, evolutionary learning or the CART algorithm, with predictor variables of any scale and with missing values. Furthermore, results of a synthetic example and a benchmark application study that comprises 26 data sets suggest that recursive segmentation achieves a competitive prediction accuracy and provides more accurate definitions of subgroups by models of less complexity as compared to recursive partitioning and PRIM. An application to the German Breast Cancer Study Group data demonstrates the improved interpretability and reliability of results produced by the new approach. The method is made publicly available through the R-package rseg (http://rseg.r-forge.r-project.org/).
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2018.1444152 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:15:p:2864-2887
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2018.1444152
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().