Robust regression: an inferential method for determining which independent variables are most important
Rand R. Wilcox
Journal of Applied Statistics, 2018, vol. 45, issue 1, 100-111
Abstract:
Consider the usual linear regression model consisting of two or more explanatory variables. There are many methods aimed at indicating the relative importance of the explanatory variables. But in general these methods do not address a fundamental issue: when all of the explanatory variables are included in the model, how strong is the empirical evidence that the first explanatory variable is more or less important than the second explanatory variable? How strong is the empirical evidence that the first two explanatory variables are more important than the third explanatory variable? The paper suggests a robust method for dealing with these issues. The proposed technique is based on a particular version of explanatory power used in conjunction with a modification of the basic percentile method.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1268105 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:1:p:100-111
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1268105
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().