A functional data approach to model score difference process in professional basketball games
Tao Chen and
Qingliang (Michael) Fan
Journal of Applied Statistics, 2018, vol. 45, issue 1, 112-127
Abstract:
In this paper, we investigate the progress of score difference (between home and away teams) in professional basketball games employing functional data analysis (FDA). The observed score difference is viewed as the realization of the latent intensity process, which is assumed to be continuous. There are two major advantages of modeling the latent score difference intensity process using FDA: (1) it allows for arbitrary dependent structure among score change increments. This removes potential model mis-specifications and accommodates momentum which is often observed in sports games. (2) further statistical inferences using FDA estimates will not suffer from inconsistency due to the issue of having a continuous model yet discretely sampled data. Based on the FDA estimates, we define and numerically characterize momentum in basketball games and demonstrate its importance in predicting game outcomes.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1268106 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:1:p:112-127
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1268106
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().