EconPapers    
Economics at your fingertips  
 

Poisson–exponential distribution: different methods of estimation

Giovani Carrara Rodrigues, Francisco Louzada and Pedro Luiz Ramos

Journal of Applied Statistics, 2018, vol. 45, issue 1, 128-144

Abstract: In this study, we present different estimation procedures for the parameters of the Poisson–exponential distribution, such as the maximum likelihood, method of moments, modified moments, ordinary and weighted least-squares, percentile, maximum product of spacings, Cramer–von Mises and the Anderson–Darling maximum goodness-of-fit estimators and compare them using extensive numerical simulations. We showed that the Anderson–Darling estimator is the most efficient for estimating the parameters of the proposed distribution. Our proposed methodology was also illustrated in three real data sets related to the minimum, average and the maximum flows during October at São Carlos River in Brazil demonstrating that the PE distribution is a simple alternative to be used in hydrological applications.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1268571 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:1:p:128-144

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2016.1268571

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:45:y:2018:i:1:p:128-144