Poisson–exponential distribution: different methods of estimation
Giovani Carrara Rodrigues,
Francisco Louzada and
Pedro Luiz Ramos
Journal of Applied Statistics, 2018, vol. 45, issue 1, 128-144
Abstract:
In this study, we present different estimation procedures for the parameters of the Poisson–exponential distribution, such as the maximum likelihood, method of moments, modified moments, ordinary and weighted least-squares, percentile, maximum product of spacings, Cramer–von Mises and the Anderson–Darling maximum goodness-of-fit estimators and compare them using extensive numerical simulations. We showed that the Anderson–Darling estimator is the most efficient for estimating the parameters of the proposed distribution. Our proposed methodology was also illustrated in three real data sets related to the minimum, average and the maximum flows during October at São Carlos River in Brazil demonstrating that the PE distribution is a simple alternative to be used in hydrological applications.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1268571 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:1:p:128-144
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1268571
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().