EconPapers    
Economics at your fingertips  
 

Gaussian Markov random field spatial models in GAMLSS

Fernanda De Bastiani, Robert A. Rigby, Dimitrios M. Stasinopoulous, Audrey H.M.A. Cysneiros and Miguel A. Uribe-Opazo

Journal of Applied Statistics, 2018, vol. 45, issue 1, 168-186

Abstract: This paper describes the modelling and fitting of Gaussian Markov random field spatial components within a Generalized AdditiveModel for Location, Scale and Shape (GAMLSS) model. This allows modelling of any or all the parameters of the distribution for the response variable using explanatory variables and spatial effects. The response variable distribution is allowed to be a non-exponential family distribution. A new package developed in R to achieve this is presented. We use Gaussian Markov random fields to model the spatial effect in Munich rent data and explore some features and characteristics of the data. The potential of using spatial analysis within GAMLSS is discussed. We argue that the flexibility of parametric distributions, ability to model all the parameters of the distribution and diagnostic tools of GAMLSS provide an ideal environment for modelling spatial features of data.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1269728 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:1:p:168-186

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2016.1269728

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:45:y:2018:i:1:p:168-186