Gaussian Markov random field spatial models in GAMLSS
Fernanda De Bastiani,
Robert A. Rigby,
Dimitrios M. Stasinopoulous,
Audrey H.M.A. Cysneiros and
Miguel A. Uribe-Opazo
Journal of Applied Statistics, 2018, vol. 45, issue 1, 168-186
Abstract:
This paper describes the modelling and fitting of Gaussian Markov random field spatial components within a Generalized AdditiveModel for Location, Scale and Shape (GAMLSS) model. This allows modelling of any or all the parameters of the distribution for the response variable using explanatory variables and spatial effects. The response variable distribution is allowed to be a non-exponential family distribution. A new package developed in R to achieve this is presented. We use Gaussian Markov random fields to model the spatial effect in Munich rent data and explore some features and characteristics of the data. The potential of using spatial analysis within GAMLSS is discussed. We argue that the flexibility of parametric distributions, ability to model all the parameters of the distribution and diagnostic tools of GAMLSS provide an ideal environment for modelling spatial features of data.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1269728 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:1:p:168-186
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1269728
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().