Lasso-type estimation for covariate-adjusted linear model
Feng Li and
Yiqiang Lu
Journal of Applied Statistics, 2018, vol. 45, issue 1, 26-42
Abstract:
Lasso is popularly used for variable selection in recent years. In this paper, lasso-type penalty functions including lasso and adaptive lasso are employed in simultaneously variable selection and parameter estimation for covariate-adjusted linear model, where the predictors and response cannot be observed directly and distorted by some observable covariate through some unknown multiplicative smooth functions. Estimation procedures are proposed and some asymptotic properties are obtained under some mild conditions. It deserves noting that under appropriate conditions, the adaptive lasso estimator correctly select covariates with nonzero coefficients with probability converging to one and that the estimators of nonzero coefficients have the same asymptotic distribution that they would have if the zero coefficients were known in advance, i.e. the adaptive lasso estimator has the oracle property in the sense of Fan and Li [6]. Simulation studies are carried out to examine its performance in finite sample situations and the Boston Housing data is analyzed for illustration.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1267121 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:1:p:26-42
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1267121
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().