EconPapers    
Economics at your fingertips  
 

Simple components

T. F. Cox and D. S. Arnold

Journal of Applied Statistics, 2018, vol. 45, issue 1, 83-99

Abstract: Interpretation of principal components is difficult due to their weights (loadings, coefficients) being of various sizes. Whereas very small weights or very large weights can give clear indication of the importance of particular variables, weights that are neither large nor small (‘grey area’ weights) are problematical. This is a particular problem in the fast moving goods industries where a lot of multivariate panel data are collected on products. These panel data are subjected to univariate analyses and multivariate analyses where principal components (PCs) are key to the interpretation of the data. Several authors have suggested alternatives to PCs, seeking simplified components such as sparse PCs. Here components, termed simple components (SCs), are sought in conjunction with Thurstonian criteria that a component should have only a few variables highly weighted on it and each variable should be weighted heavily on just a few components. An algorithm is presented that finds SCs efficiently. Simple components are found for panel data consisting of the responses to a questionnaire on efficacy and other features of deodorants. It is shown that five SCs can explain an amount of variation within the data comparable to that explained by the PCs, but with easier interpretation.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1268104 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:1:p:83-99

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2016.1268104

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:45:y:2018:i:1:p:83-99