Bayesian inference for the randomly censored Burr-type XII distribution
Muhammad Yameen Danish,
Irshad Ahmad Arshad and
Muhammad Aslam
Journal of Applied Statistics, 2018, vol. 45, issue 2, 270-283
Abstract:
The article presents the Bayesian inference for the parameters of randomly censored Burr-type XII distribution with proportional hazards. The joint conjugate prior of the proposed model parameters does not exist; we consider two different systems of priors for Bayesian estimation. The explicit forms of the Bayes estimators are not possible; we use Lindley's method to obtain the Bayes estimates. However, it is not possible to obtain the Bayesian credible intervals with Lindley's method; we suggest the Gibbs sampling procedure for this purpose. Numerical experiments are performed to check the properties of the different estimators. The proposed methodology is applied to a real-life data for illustrative purposes. The Bayes estimators are compared with the Maximum likelihood estimators via numerical experiments and real data analysis. The model is validated using posterior predictive simulation in order to ascertain its appropriateness.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1275530 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:2:p:270-283
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1275530
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().