EconPapers    
Economics at your fingertips  
 

Heteroscedastic log-exponentiated Weibull regression model

Edwin M. M. Ortega, Artur J. Lemonte, Gauss M. Cordeiro, Vicente G. Cancho and Fábio L. Mialhe

Journal of Applied Statistics, 2018, vol. 45, issue 3, 384-408

Abstract: We introduce a new class of heteroscedastic log-exponentiated Weibull (LEW) regression models. The class of regression models can be applied to censored data and be used more effectively in survival analysis. Maximum likelihood estimation of the model parameters with censored data as well as influence diagnostics for the new regression model is investigated. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and compared to the performance of the heteroscedastic LEW regression model. The normal curvatures for studying local influence are derived under various perturbation schemes. An empirical application to a real data set is provided to illustrate the usefulness of the new class of heteroscedastic regression models.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1277192 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:3:p:384-408

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2016.1277192

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:45:y:2018:i:3:p:384-408