Addressing the problem of missing data in decision tree modeling
Saiedeh Haji-Maghsoudi,
Azam Rastegari,
Behshid Garrusi and
Mohammad Reza Baneshi
Journal of Applied Statistics, 2018, vol. 45, issue 3, 547-557
Abstract:
Tree-based models (TBMs) can substitute missing data using the surrogate approach (SUR). The aim of this study is to compare the performance of statistical imputation against the performance of SUR in TBMs. Employing empirical data, a TBM was constructed. Thereafter, 10%, 20%, and 40% of variable values appeared as the first split was deleted, and imputed with and without the use of outcome variables in the imputation model (IMP− and IMP+). This was repeated one thousand times. Absolute relative bias above 0.10 was defined as sever (SARB). Subsequently, in a series of simulations, the following parameters were changed: the degree of correlation among variables, the number of variables truly associated with the outcome, and the missing rate. At a 10% missing rate, the proportion of times SARB was observed in either SUR or IMP− was two times higher than in IMP+ (28% versus 13%). When the missing rate was increased to 20%, all these proportions were approximately doubled. Irrespective of the missing rate, IMP+ was about 65% less likely to produce SARB than SUR. Results of IMP− and SUR were comparable up to a 20% missing rate. At a high missing rate, IMP− was 76% more likely to provide SARB estimates. Statistical imputation of missing data and the use of outcome variable in the imputation model is recommended, even in the content of TBM.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2017.1284184 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:3:p:547-557
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2017.1284184
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().