Bayesian composite Tobit quantile regression
Fadel Hamid Hadi Alhusseini and
Vasile Georgescu
Journal of Applied Statistics, 2018, vol. 45, issue 4, 727-739
Abstract:
Composite quantile regression models have been shown to be effective techniques in improving the prediction accuracy [H. Zou and M. Yuan, Composite quantile regression and the oracle model selection theory, Ann. Statist. 36 (2008), pp. 1108–1126; J. Bradic, J. Fan, and W. Wang, Penalized composite quasi-likelihood for ultrahighdimensional variable selection, J. R. Stat. Soc. Ser. B 73 (2011), pp. 325–349; Z. Zhao and Z. Xiao, Efficient regressions via optimally combining quantile information, Econometric Theory 30(06) (2014), pp. 1272–1314]. This paper studies composite Tobit quantile regression (TQReg) from a Bayesian perspective. A simple and efficient MCMC-based computation method is derived for posterior inference using a mixture of an exponential and a scaled normal distribution of the skewed Laplace distribution. The approach is illustrated via simulation studies and a real data set. Results show that combine information across different quantiles can provide a useful method in efficient statistical estimation. This is the first work to discuss composite TQReg from a Bayesian perspective.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2017.1299697 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:4:p:727-739
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2017.1299697
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().