EconPapers    
Economics at your fingertips  
 

Readouts for echo-state networks built using locally regularized orthogonal forward regression

Ján Dolinský, Kei Hirose and Sadanori Konishi

Journal of Applied Statistics, 2018, vol. 45, issue 4, 740-762

Abstract: Echo state network (ESN) is viewed as a temporal expansion which naturally give rise to regressors of various relevance to a teacher output. We illustrate that often only a certain amount of the generated echo-regressors effectively explain the teacher output and we propose to determine the importance of the echo-regressors by a joint calculation of the individual variance contributions and Bayesian relevance using the locally regularized orthogonal forward regression (LROFR). This information can be advantageously used in a variety of ways for an analysis of an ESN structure. We present a locally regularized linear readout built using LROFR. The readout may have a smaller dimensionality than the ESN model itself, and improves robustness and accuracy of an ESN. Its main advantage is ability to determine what type of an additional readout is suitable for a task at hand. Comparison with PCA is provided too. We also propose a radial basis function (RBF) readout built using LROFR, since flexibility of the linear readout has limitations and might be insufficient for complex tasks. Its excellent generalization abilities make it a viable alternative to feed-forward neural networks or relevance-vector-machines. For cases where more temporal capacity is required we propose well studied delay&sum readout.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2017.1305331 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:4:p:740-762

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2017.1305331

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:45:y:2018:i:4:p:740-762