Cluster detection and clustering with random start forward searches
Anthony C. Atkinson,
Marco Riani and
Andrea Cerioli
Journal of Applied Statistics, 2018, vol. 45, issue 5, 777-798
Abstract:
The forward search is a method of robust data analysis in which outlier free subsets of the data of increasing size are used in model fitting; the data are then ordered by closeness to the model. Here the forward search, with many random starts, is used to cluster multivariate data. These random starts lead to the diagnostic identification of tentative clusters. Application of the forward search to the proposed individual clusters leads to the establishment of cluster membership through the identification of non-cluster members as outlying. The method requires no prior information on the number of clusters and does not seek to classify all observations. These properties are illustrated by the analysis of 200 six-dimensional observations on Swiss banknotes. The importance of linked plots and brushing in elucidating data structures is illustrated. We also provide an automatic method for determining cluster centres and compare the behaviour of our method with model-based clustering. In a simulated example with eight clusters our method provides more stable and accurate solutions than model-based clustering. We consider the computational requirements of both procedures.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2017.1310806 (text/html)
Access to full text is restricted to subscribers.
Related works:
Working Paper: Cluster detection and clustering with random start forward searches (2017) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:5:p:777-798
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2017.1310806
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().