EconPapers    
Economics at your fingertips  
 

A Bayesian model for measurement and misclassification errors alongside missing data, with an application to higher education participation in Australia

Harvey Goldstein, William J. Browne and Christopher Charlton

Journal of Applied Statistics, 2018, vol. 45, issue 5, 918-931

Abstract: In this paper we consider the impact of both missing data and measurement errors on a longitudinal analysis of participation in higher education in Australia. We develop a general method for handling both discrete and continuous measurement errors that also allows for the incorporation of missing values and random effects in both binary and continuous response multilevel models. Measurement errors are allowed to be mutually dependent and their distribution may depend on further covariates. We show that our methodology works via two simple simulation studies. We then consider the impact of our measurement error assumptions on the analysis of the real data set.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2017.1322558 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:5:p:918-931

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2017.1322558

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:45:y:2018:i:5:p:918-931