The generalized inference on the sign testing problem about the normal variances
Wei-Ya Wu,
Wei-Hwa Wu,
Hsin-Neng Hsieh and
Meng-Chih Lee
Journal of Applied Statistics, 2018, vol. 45, issue 5, 956-970
Abstract:
For the sign testing problem about the normal variances, we develop the heuristic testing procedure based on the concept of generalized test variable and generalized p-value. A detailed simulation study is conducted to empirically investigate the performance of the proposed method. Through the simulation study, especially in small sample sizes, the proposed test not only adequately controls empirical size at the nominal level, but also uniformly more powerful than likelihood ratio test, Gutmann's test, Li and Sinha's test and Liu and Chan's test, showing that the proposed method can be recommended in practice. The proposed method is illustrated with the published data.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2017.1325857 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:5:p:956-970
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2017.1325857
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().