Variable selection for mode regression
Yingzhen Chen,
Xuejun Ma and
Jingke Zhou
Journal of Applied Statistics, 2018, vol. 45, issue 6, 1077-1084
Abstract:
From the prediction viewpoint, mode regression is more attractive since it pay attention to the most probable value of response variable given regressors. On the other hand, high-dimensional data are very prevalent as the advance of the technology of collecting and storing data. Variable selection is an important strategy to deal with high-dimensional regression problem. This paper aims to propose a variable selection procedure for high-dimensional mode regression via combining nonparametric kernel estimation method with sparsity penalty tactics. We also establish the asymptotic properties under certain technical conditions. The effectiveness and flexibility of the proposed methods are further illustrated by numerical studies and the real data application.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2017.1342781 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:6:p:1077-1084
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2017.1342781
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().