EconPapers    
Economics at your fingertips  
 

Statistical models for short- and long-term forecasts of snow depth

Hugo Lewi Hammer

Journal of Applied Statistics, 2018, vol. 45, issue 6, 1133-1156

Abstract: Forecasting of future snow depths is useful for many applications like road safety, winter sport activities, avalanche risk assessment and hydrology. Motivated by the lack of statistical forecasts models for snow depth, in this paper we present a set of models to fill this gap. First, we present a model to do short-term forecasts when we assume that reliable weather forecasts of air temperature and precipitation are available. The covariates are included nonlinearly into the model following basic physical principles of snowfall, snow aging and melting. Due to the large set of observations with snow depth equal to zero, we use a zero-inflated gamma regression model, which is commonly used to similar applications like precipitation. We also do long-term forecasts of snow depth and much further than traditional weather forecasts for temperature and precipitation. The long-term forecasts are based on fitting models to historic time series of precipitation, temperature and snow depth. We fit the models to data from six locations in Norway with different climatic and vegetation properties. Forecasting five days into the future, the results showed that, given reliable weather forecasts of temperature and precipitation, the forecast errors in absolute value was between 3 and 7 cm for different locations in Norway. Forecasting three weeks into the future, the forecast errors were between 7 and 16 cm.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2017.1357683 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:6:p:1133-1156

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2017.1357683

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:45:y:2018:i:6:p:1133-1156