Treatments of non-metric variables in partial least squares and principal component analysis
Jisu Yoon and
Tatyana Krivobokova
Journal of Applied Statistics, 2018, vol. 45, issue 6, 971-987
Abstract:
This paper reviews various treatments of non-metric variables in partial least squares (PLS) and principal component analysis (PCA) algorithms. The performance of different treatments is compared in an extensive simulation study under several typical data generating processes and associated recommendations are made. Moreover, we find that PLS-based methods are to prefer in practice, since, independent of the data generating process, PLS performs either as good as PCA or significantly outperforms it. As an application of PLS and PCA algorithms with non-metric variables we consider construction of a wealth index to predict household expenditures. Consistent with our simulation study, we find that a PLS-based wealth index with dummy coding outperforms PCA-based ones.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2017.1346065 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:6:p:971-987
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2017.1346065
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().