EconPapers    
Economics at your fingertips  
 

Bayesian regression model for recurrent event data with event-varying covariate effects and event effect

Li-An Lin, Sheng Luo and Barry R. Davis

Journal of Applied Statistics, 2018, vol. 45, issue 7, 1260-1276

Abstract: In the course of hypertension, cardiovascular disease events (e.g. stroke, heart failure) occur frequently and recurrently. The scientific interest in such study may lie in the estimation of treatment effect while accounting for the correlation among event times. The correlation among recurrent event times comes from two sources: subject-specific heterogeneity (e.g. varied lifestyles, genetic variations, and other unmeasurable effects) and event dependence (i.e. event incidences may change the risk of future recurrent events). Moreover, event incidences may change the disease progression so that there may exist event-varying covariate effects (the covariate effects may change after each event) and event effect (the effect of prior events on the future events). In this article, we propose a Bayesian regression model that not only accommodates correlation among recurrent events from both sources, but also explicitly characterizes the event-varying covariate effects and event effect. This model is especially useful in quantifying how the incidences of events change the effects of covariates and risk of future events. We compare the proposed model with several commonly used recurrent event models and apply our model to the motivating lipid-lowering trial (LLT) component of the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) (ALLHAT-LLT).

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2017.1367368 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:7:p:1260-1276

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2017.1367368

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:45:y:2018:i:7:p:1260-1276