Modified chain sampling plans for lot inspection by variables and attributes
Stijn Luca
Journal of Applied Statistics, 2018, vol. 45, issue 8, 1447-1464
Abstract:
The purpose of acceptance sampling is to develop decision rules to accept or reject production lots based on sample data. When testing is destructive or expensive, dependent sampling procedures cumulate results from several preceding lots. This chaining of past lot results reduces the required size of the samples. A large part of these procedures only chain past lot results when defects are found in the current sample. However, such selective use of past lot results only achieves a limited reduction of sample sizes. In this article, a modified approach for chaining past lot results is proposed that is less selective in its use of quality history and, as a result, requires a smaller sample size than the one required for commonly used dependent sampling procedures, such as multiple dependent sampling plans and chain sampling plans of Dodge. The proposed plans are applicable for inspection by attributes and inspection by variables. Several properties of their operating characteristic-curves are derived, and search procedures are given to select such modified chain sampling plans by using the two-point method.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2017.1375084 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:8:p:1447-1464
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2017.1375084
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().