Spatial hidden Markov models and species distributions
Luigi Spezia,
Nial Friel and
Alessandro Gimona
Journal of Applied Statistics, 2018, vol. 45, issue 9, 1595-1615
Abstract:
A spatial hidden Markov model (SHMM) is introduced to analyse the distribution of a species on an atlas, taking into account that false observations and false non-detections of the species can occur during the survey, blurring the true map of presence and absence of the species. The reconstruction of the true map is tackled as the restoration of a degraded pixel image, where the true map is an autologistic model, hidden behind the observed map, whose normalizing constant is efficiently computed by simulating an auxiliary map. The distribution of the species is explained under the Bayesian paradigm and Markov chain Monte Carlo (MCMC) algorithms are developed. We are interested in the spatial distribution of the bird species Greywing Francolin in the south of Africa. Many climatic and land-use explanatory variables are also available: they are included in the SHMM and a subset of them is selected by the mutation operators within the MCMC algorithm.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2017.1386771 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:9:p:1595-1615
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2017.1386771
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().