Design and analysis considerations for comparing dynamic treatment regimens with binary outcomes from sequential multiple assignment randomized trials
Kelley M. Kidwell,
Nicholas J. Seewald,
Qui Tran,
Connie Kasari and
Daniel Almirall
Journal of Applied Statistics, 2018, vol. 45, issue 9, 1628-1651
Abstract:
In behavioral, educational and medical practice, interventions are often personalized over time using strategies that are based on individual behaviors and characteristics and changes in symptoms, severity, or adherence that are a result of one's treatment. Such strategies that more closely mimic real practice, are known as dynamic treatment regimens (DTRs). A sequential multiple assignment randomized trial (SMART) is a multi-stage trial design that can be used to construct effective DTRs. This article reviews a simple to use ‘weighted and replicated’ estimation technique for comparing DTRs embedded in a SMART design using logistic regression for a binary, end-of-study outcome variable. Based on a Wald test that compares two embedded DTRs of interest from the ‘weighted and replicated’ regression model, a sample size calculation is presented with a corresponding user-friendly applet to aid in the process of designing a SMART. The analytic models and sample size calculations are presented for three of the more commonly used two-stage SMART designs. Simulations for the sample size calculation show the empirical power reaches expected levels. A data analysis example with corresponding code is presented in the appendix using data from a SMART developing an effective DTR in autism.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2017.1386773 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:9:p:1628-1651
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2017.1386773
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().