EconPapers    
Economics at your fingertips  
 

Untangle the structural and random zeros in statistical modelings

W. Tang, H. He, W.J. Wang and D.G. Chen

Journal of Applied Statistics, 2018, vol. 45, issue 9, 1714-1733

Abstract: Count data with structural zeros are common in public health applications. There are considerable researches focusing on zero-inflated models such as zero-inflated Poisson (ZIP) and zero-inflated Negative Binomial (ZINB) models for such zero-inflated count data when used as response variable. However, when such variables are used as predictors, the difference between structural and random zeros is often ignored and may result in biased estimates. One remedy is to include an indicator of the structural zero in the model as a predictor if observed. However, structural zeros are often not observed in practice, in which case no statistical method is available to address the bias issue. This paper is aimed to fill this methodological gap by developing parametric methods to model zero-inflated count data when used as predictors based on the maximum likelihood approach. The response variable can be any type of data including continuous, binary, count or even zero-inflated count responses. Simulation studies are performed to assess the numerical performance of this new approach when sample size is small to moderate. A real data example is also used to demonstrate the application of this method.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2017.1391180 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:9:p:1714-1733

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2017.1391180

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:45:y:2018:i:9:p:1714-1733