Robust sparse regression by modeling noise as a mixture of gaussians
Shuang Xu and
Chun-Xia Zhang
Journal of Applied Statistics, 2019, vol. 46, issue 10, 1738-1755
Abstract:
Regression analysis has been proven to be a quite effective tool in a large variety of fields. In many regression models, it is often assumed that noise is with a specific distribution. Although the theoretical analysis can be greatly facilitated, the model-fitting performance may be poor since the supposed noise distribution may deviate from real noise to a large extent. Meanwhile, the model is also expected to be robust in consideration of the complexity of real-world data. Without any assumption about noise, we propose in this paper a novel sparse regression method called MoG-Lasso to directly model noise in linear regression models via a mixture of Gaussian distributions (MoG). Meanwhile, the $ L_1 $ L1 penalty is included as a part of the loss function of MoG-Lasso to enhance its ability to identify a sparse model. As for the parameters in MoG-Lasso, we present an efficient algorithm to estimate them via the EM (expectation maximization) and ADMM (alternating direction method of multipliers) algorithms. With some simulated and real data contaminated by complex noise, the experiments show that the novel model MoG-Lasso performs better than several other popular methods in both ‘p>n’ and ‘p
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2019.1566448 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:46:y:2019:i:10:p:1738-1755
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2019.1566448
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().