Bayesian integrative analysis for multi-fidelity computer experiments
Yunfei Wei and
Shifeng Xiong
Journal of Applied Statistics, 2019, vol. 46, issue 11, 1973-1987
Abstract:
This paper proposes a Bayesian integrative analysis method for linking multi-fidelity computer experiments. Instead of assuming covariance structures of multivariate Gaussian process models, we handle the outputs from different levels of accuracy as independent processes and link them via a penalization method that controls the distance between their overall trends. Based on the priors induced by the penalty, we build Bayesian prediction models for the output at the highest accuracy. Simulated and real examples show that the proposed method is better than existing methods in terms of prediction accuracy for many cases.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2019.1575340 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:46:y:2019:i:11:p:1973-1987
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2019.1575340
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().