EconPapers    
Economics at your fingertips  
 

Nonlinear semiparametric autoregressive model with finite mixtures of scale mixtures of skew normal innovations

A. Hajrajabi and M. Maleki

Journal of Applied Statistics, 2019, vol. 46, issue 11, 2010-2029

Abstract: We propose data generating structures which can be represented as the nonlinear autoregressive models with single and finite mixtures of scale mixtures of skew normal innovations. This class of models covers symmetric/asymmetric and light/heavy-tailed distributions, so provide a useful generalization of the symmetrical nonlinear autoregressive models. As semiparametric and nonparametric curve estimation are the approaches for exploring the structure of a nonlinear time series data set, in this article the semiparametric estimator for estimating the nonlinear function of the model is investigated based on the conditional least square method and nonparametric kernel approach. Also, an Expectation–Maximization-type algorithm to perform the maximum likelihood (ML) inference of unknown parameters of the model is proposed. Furthermore, some strong and weak consistency of the semiparametric estimator in this class of models are presented. Finally, to illustrate the usefulness of the proposed model, some simulation studies and an application to real data set are considered.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2019.1575953 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:46:y:2019:i:11:p:2010-2029

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2019.1575953

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:46:y:2019:i:11:p:2010-2029