A Bayesian approach for misclassified ordinal response data
Lizbeth Naranjo,
Carlos J. Pérez,
Jacinto Martín,
Timothy Mutsvari and
Emmanuel Lesaffre
Journal of Applied Statistics, 2019, vol. 46, issue 12, 2198-2215
Abstract:
Motivated by a longitudinal oral health study, the Signal-Tandmobiel® study, a Bayesian approach has been developed to model misclassified ordinal response data. Two regression models have been considered to incorporate misclassification in the categorical response. Specifically, probit and logit models have been developed. The computational difficulties have been avoided by using data augmentation. This idea is exploited to derive efficient Markov chain Monte Carlo methods. Although the method is proposed for ordered categories, it can also be implemented for unordered ones in a simple way. The model performance is shown through a simulation-based example and the analysis of the motivating study.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2019.1582613 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:46:y:2019:i:12:p:2198-2215
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2019.1582613
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().