EconPapers    
Economics at your fingertips  
 

Propensity score prediction for electronic healthcare databases using super learner and high-dimensional propensity score methods

Cheng Ju, Mary Combs, Samuel D. Lendle, Jessica M. Franklin, Richard Wyss, Sebastian Schneeweiss and Mark J. van der Laan

Journal of Applied Statistics, 2019, vol. 46, issue 12, 2216-2236

Abstract: The optimal learner for prediction modeling varies depending on the underlying data-generating distribution. Super Learner (SL) is a generic ensemble learning algorithm that uses cross-validation to select among a ‘library’ of candidate prediction models. While SL has been widely studied in a number of settings, it has not been thoroughly evaluated in large electronic healthcare databases that are common in pharmacoepidemiology and comparative effectiveness research. In this study, we applied and evaluated the performance of SL in its ability to predict the propensity score (PS), the conditional probability of treatment assignment given baseline covariates, using three electronic healthcare databases. We considered a library of algorithms that consisted of both nonparametric and parametric models. We also proposed a novel strategy for prediction modeling that combines SL with the high-dimensional propensity score (hdPS) variable selection algorithm. Predictive performance was assessed using three metrics: the negative log-likelihood, area under the curve (AUC), and time complexity. Results showed that the best individual algorithm, in terms of predictive performance, varied across datasets. The SL was able to adapt to the given dataset and optimize predictive performance relative to any individual learner. Combining the SL with the hdPS was the most consistent prediction method and may be promising for PS estimation and prediction modeling in electronic healthcare databases.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2019.1582614 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:46:y:2019:i:12:p:2216-2236

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2019.1582614

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:46:y:2019:i:12:p:2216-2236