EconPapers    
Economics at your fingertips  
 

Probabilistic frontier regression models for binary type output data

Meena Badade and T. V. Ramanathan

Journal of Applied Statistics, 2019, vol. 46, issue 13, 2460-2480

Abstract: This paper proposes a probabilistic frontier regression model for binary type output data in a production process setup. We consider one of the two categories of outputs as ‘selected’ category and the reduction in probability of falling in this category is attributed to the reduction in technical efficiency (TE) of the decision-making unit. An efficiency measure is proposed to determine the deviations of individual units from the probabilistic frontier. Simulation results show that the average estimated TE component is close to its true value. An application of the proposed method to the data related to the Indian public sector banking system is provided where the output variable is the indicator of level of non-performing assets. Individual TE is obtained for each of the banks under consideration. Among the public sector banks, Andhra bank is found to be the most efficient, whereas the United Bank of India is the least.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2019.1597838 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:46:y:2019:i:13:p:2460-2480

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2019.1597838

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:46:y:2019:i:13:p:2460-2480